Thursday, 12 October 2017

Tydreeks Vooruitskatting Gebruik Van Bewegende Gemiddelde


Top Menu Time Series en vooruitskatting R het 'n uitgebreide fasiliteite vir die ontleding van tydreeksdata. Hierdie afdeling beskryf die skepping van 'n tydreeks, seisoenale decompostion, modellering met eksponensiële en ARIMA modelle, en voorspel met die voorspelling pakket. Die skep van 'n tydreeks Die ts () funksie sal 'n numeriese vektor omskep in 'n R tydreekse voorwerp. Die formaat is ts (vektor, begin, einde, frekwensie) waar begin en einde is die tye van die eerste en laaste waarneming en frekwensie is die aantal waarnemings per eenheid tyd (1annual, 4quartly, 12monthly, ens). red 'n numeriese vektor met 72 maandelikse waarnemings van Januarie 2009 tot Desember 2014 as 'n tydreeks voorwerp myts LT ts (myvector, startc (2009, 1), endc (2014 12), frequency12) subset die tydreeks (Junie 2014 tot Desember 2014) myts2 LT venster (myts, startc (2014 6), endc (2014 12)) plot reeks plot (myts) Seisoene Ontbinding n tydreeks met toevoeging tendens, seisoenale en onreëlmatige komponente kan ontbind word met behulp van die STL () funksie. Let daarop dat 'n reeks met vermenigvuldigende uitwerking dikwels deur kan omskep word in 'n reeks met toevoeging effekte deur 'n log transformasie (dit wil sê salamanders LT log (myts)). Seisoenale ontbinding pas LT STL (myts, s. windowperiod) plot (pas) addisionele erwe monthplot (myts) biblioteek (voorspelling) seasonplot (myts) Eksponensiële modelle Beide die HoltWinters () funksie in die basis installasie, en die ETS () funksie in die vooruitsig pakket, kan gebruik word om eksponensiële modelle inpas. eenvoudige eksponensiële - modelle vlak fiks LT HoltWinters (myts, betaFALSE, gammaFALSE) dubbel eksponensiële - modelle vlak en tendens inpas LT HoltWinters (myts, gammaFALSE) driedubbele eksponensiële - modelle vlak, tendens, en seisoenale komponente pas LT HoltWinters (myts) voorspellingsakkuraatheid biblioteek (voorspelling) akkuraatheid (pas) voorspel volgende drie toekomstige waardes biblioteek (voorspelling) voorspel (fiks, 3) plot (voorspelling (fiks, 3)) ARIMA Models Die funksie ARIMA () gebruik kan word om 'n outoregressiewe pas geïntegreerde bewegende gemiddeldes model. Ander nuttige funksies sluit in: uitgesak weergawe van tydreekse, verskuif k observationsA tydreekse terug is 'n reeks waarnemings van 'n periodieke ewekansige veranderlike. Voorbeelde hiervan is die maandelikse vraag na 'n produk, die jaarlikse eerstejaars inskrywing in 'n departement van die Universiteit en die daaglikse vloei in 'n rivier. Tydreeks is belangrik vir operasionele navorsing, want hulle is dikwels die bestuurders van beslissing modelle. 'N inventaris model ramings van toekomstige eise vereis, 'n kursus skedulering en personeel model vir 'n universiteit departement vereis ramings van toekomstige student invloei, en 'n model vir die verskaffing van waarskuwings aan die bevolking in 'n rivier bekken vereis skattings van riviervloei vir die onmiddellike toekoms. Tydreeksanalise bied gereedskap vir die kies van 'n model wat die tydreeks beskryf en met behulp van die model om toekomstige gebeure te voorspel. Modellering van die tydreeks is 'n statistiese probleem omdat waargeneem data word gebruik in berekeningsprosedures die koëffisiënte van 'n vermeende model skat. Modelle aanvaar dat waarnemings wissel lukraak oor 'n onderliggende gemiddelde waarde wat 'n funksie van tyd. Op hierdie bladsye beperk ons ​​aandag aan die gebruik van historiese tydreeksdata 'n tyd afhanklik model skat. Die metodes is geskik vir 'n outomatiese, korttermyn voorspelling van dikwels gebruik inligting waar die onderliggende oorsake van tyd variasie is nie merkbaar verander in die tyd. In die praktyk word die voorspellings afgelei deur hierdie metodes daarna gewysig deur menslike ontleders wat inligting nie beskikbaar by die historiese data te inkorporeer. Ons primêre doel van hierdie artikel is om die vergelykings te bied vir die vier voorspelling metodes gebruik in die vooruitskatting add-in: bewegende gemiddelde, eksponensiële gladstryking, regressie en dubbel eksponensiële gladstryking. Dit is genoem glad metodes. Metodes nie oorweeg sluit kwalitatiewe vooruitskatting, meervoudige regressie, en outoregressiewe metodes (ARIMA). Diegene wat belangstel in meer uitgebreide dekking moet die voorspelling Beginsels webwerf te besoek of lees een van die verskeie uitstekende boeke oor die onderwerp. Ons gebruik die boek vooruitskatting. deur Makridakis, wielmaker en McGee, John Wiley amp Sons, 1983. Om die Excel Voorbeelde werkboek gebruik, moet jy die vooruitskatting add-in geïnstalleer. Kies die opdrag Herskakel om die skakels na die add-in te stel. Hierdie bladsy beskryf die gebruik van eenvoudige voorspelling en die notasie wat gebruik word vir die analise modelle. Dit eenvoudigste vooruitskatting metode is die bewegende gemiddelde skatting. Die metode eenvoudig gemiddeldes van die laaste m waarnemings. Dit is nuttig vir tydreekse met 'n stadig veranderende gemiddelde. Hierdie metode van mening dat die hele verlede in sy voorspelling, maar weeg onlangse ervaring swaarder as minder onlangse. Die berekeninge is eenvoudig omdat slegs die raming van die vorige tydperk en die huidige data die nuwe skatting bepaal. Die metode is nuttig vir tydreekse met 'n stadig veranderende gemiddelde. Die bewegende gemiddelde metode nie goed reageer op 'n tydreeks wat die styging of daling met tyd. Hier sluit ons 'n lineêre tendens term in die model. Die regressie benaderde model deur die bou van 'n lineêre vergelyking wat die kleinste kwadrate geskik is om die laaste m observations. In oefen die bewegende gemiddelde sal 'n goeie raming van die gemiddelde van die tydreeks te voorsien bied as die gemiddelde is konstant of stadig verander. In die geval van 'n konstante gemiddelde, sal die grootste waarde van m die beste raming van die onderliggende gemiddelde gee. 'N langer tydperk waarneming sal gemiddeld uit die gevolge van variasie. Die doel van die verskaffing van 'n kleiner m is om voorsiening te maak die voorspelling om te reageer op 'n verandering in die onderliggende proses. Om te illustreer, stel ons 'n datastel wat veranderinge in die onderliggende gemiddelde van die tydreeks inkorporeer. Die figuur toon die tyd reeks gebruik ter illustrasie saam met die vraag gemiddelde waaruit die reeks was gegenereer. Die gemiddelde begin as 'n konstante by 10. Vanaf die tyd 21, verhoog dit met 'n eenheid in elke tydperk totdat dit die waarde van 20 ten tye 30. bereik Dan weer konstant raak dit. Die data word gesimuleer deur die byvoeging van die gemiddelde, 'n ewekansige geluid van 'n normale verspreiding met 'n nul gemiddelde en standaardafwyking 3. Die resultate van die simulasie is afgerond tot die naaste heelgetal. Die tabel toon die gesimuleerde Waarnemings wat gebruik word vir die voorbeeld. Wanneer ons die tafel gebruik, moet ons onthou dat op enige gegewe tyd, word slegs die afgelope data bekend. Die raming van die model parameter, vir drie verskillende waardes van m word saam met die gemiddelde van die tydreeks in die figuur hieronder. Die figuur toon die bewegende gemiddelde skatting van die gemiddelde by elke keer en nie die voorspelling. Die vooruitskattings sal die bewegende gemiddelde kurwes skuif na regs deur periodes. Een gevolgtrekking is onmiddellik duidelik uit die figuur. Vir al drie skattings loop die bewegende gemiddelde agter die lineêre tendens, met die lag verhoog met m. Die lag is die afstand tussen die model en die raming in die tydsdimensie. As gevolg van die lag, die bewegende gemiddelde onderskat die waarnemings as die gemiddelde is aan die toeneem. Die vooroordeel van die beramer is die verskil op 'n spesifieke tyd in die gemiddelde waarde van die model en die gemiddelde waarde voorspel deur die bewegende gemiddelde. Die vooroordeel wanneer die gemiddelde is aan die toeneem is negatief. Vir 'n dalende gemiddelde, die vooroordeel is positief. Die vertraging in die tyd en die vooroordeel wat in die raming is funksies van m. Hoe groter die waarde van m. hoe groter die omvang van die lag en vooroordeel. Vir 'n voortdurend toenemende reeks met tendens a. die waardes van die lag en vooroordeel van die beramer van die gemiddelde is in die onderstaande vergelykings. Die voorbeeld krommes stem nie ooreen hierdie vergelykings omdat die voorbeeld model is nie voortdurend aan die toeneem, eerder dit begin as 'n konstante, veranderinge aan 'n tendens en dan weer word konstant. Ook die voorbeeld krommes geraak word deur die lawaai. Die bewegende gemiddelde voorspelling van periodes in die toekoms word verteenwoordig deur die verskuiwing van die kromme na regs. Die lag en vooroordeel te verhoog proporsioneel. Die onderstaande vergelykings dui die lag en vooroordeel van 'n voorspelling tydperke in die toekoms in vergelyking met die model parameters. Weereens, hierdie formules is vir 'n tyd reeks met 'n konstante lineêre tendens. Ons moet nie verbaas wees oor die resultaat wees. Die bewegende gemiddelde beramer is gebaseer op die aanname van 'n konstante gemiddelde, en die voorbeeld het 'n liniêre tendens in die gemiddelde tydens 'n gedeelte van die studietydperk. Sedert real time reeks sal selde presies die aannames van enige model te gehoorsaam, moet ons bereid wees om vir sulke resultate. Ons kan ook aflei uit die figuur dat die variasie van die geraas het die grootste effek vir kleiner m. Die skatting is baie meer wisselvallig vir die bewegende gemiddelde van 5 as die bewegende gemiddelde van 20. Ons het die botsende begeertes te m verhoog die effek van variasie te verminder as gevolg van die geraas, en om m te verminder die voorspelling meer reageer op veranderinge aan te bring in die gemiddelde. Die fout is die verskil tussen die werklike data en die geskatte waarde. As die tyd reeks is werklik 'n konstante waarde van die verwagte waarde van die fout is nul en die variansie van die fout bestaan ​​uit 'n term wat 'n funksie is van en 'n tweede termyn wat die variansie van die geraas,. Die eerste kwartaal is die variansie van die gemiddelde geskatte met 'n monster van m waarnemings, die aanvaarding van die data kom uit 'n bevolking met 'n konstante gemiddelde. Hierdie term word tot die minimum beperk deur m so groot as moontlik. 'N Groot m maak die voorspelling nie reageer op 'n verandering in die onderliggende tydreekse. Die voorspelling reageer op veranderinge aan te bring, wil ons m so klein as moontlik (1), maar dit verhoog die foutvariansie. Praktiese vooruitskatting vereis 'n intermediêre waarde. Vooruitskatting met Excel Die vooruitskatting add-in implemente die bewegende gemiddelde formules. Die voorbeeld hieronder toon die analise wat deur die byvoeging in vir die voorbeeld van die data in kolom B. Die eerste 10 waarnemings word geïndekseer -9 deur 0. In vergelyking met die tabel hierbo, is die tydperk indekse verskuif deur -10. Die eerste tien Waarnemings verskaf die begin waardes vir die beraming en gebruik word om die bewegende gemiddelde vir tydperk 0. Die MA (10) kolom (C) toon die berekende bewegende gemiddeldes te bereken. Die bewegende gemiddelde parameter m is in sel C3. Vore (1) kolom (D) toon 'n voorspelling vir een periode na die toekoms. Die voorspelling interval is in sel D3. Wanneer die voorspelling interval verander word na 'n groter aantal van die getalle in die kolom vore geskuif af. Die kolom Fout (1) (e) toon die verskil tussen die waarneming en die voorspelling. Byvoorbeeld, die waarneming by die tyd 1 is 6. Die geskatte waarde uit die bewegende gemiddelde op tydstip 0 is 11.1. Die fout dan is -5,1. Die gemiddeldes en standaardafwykings Gemiddelde Afwyking (MAD) word bereken in selle E6 en E7 respectively. Forecasting met tydreeksanalise Wat voorspel voorspelling is 'n metode wat gebruik word op groot skaal in tydreeksanalise 'n reaksie veranderlike te voorspel, soos maandelikse wins, voorraad prestasie, of werkloosheidsyfers, vir 'n bepaalde tydperk. Voorspellings is gebaseer op patrone in bestaande data. Byvoorbeeld, kan 'n pakhuis bestuurder model hoeveel produk te bestel vir die volgende 3 maande gebaseer op die vorige 12 maande van bestellings. Jy kan 'n verskeidenheid van tydreekse metodes, soos tendens analise, ontbinding, of enkele eksponensiële gladstryking gebruik om patrone in die data te modelleer en ekstrapoleer diegene patrone vir die toekoms. Kies 'n ontleding metode of die patrone is staties (konstant oor tyd) of dinamies (verander met verloop van tyd), die aard van die tendens en seisoenale komponente, en hoe ver vooruit wat jy wil om te voorspel. Voordat die vervaardiging van voorspellings, pas verskeie kandidaat modelle om die data te bepaal watter model is die mees stabiele en akkurate. Voorspellings vir 'n bewegende gemiddelde ontleding Die toegerus waarde op tydstip t is die uncentered bewegende gemiddelde op tydstip t -1. Die vooruitskattings is die ingeboude waardes by die vooruitsig oorsprong. As jy voor voorspel 10 tydeenhede, sal die voorspelde waarde vir elke keer as die ingeboude waarde by die oorsprong wees. Data tot die oorsprong word gebruik vir die berekening van die bewegende gemiddeldes. Jy kan die lineêre gebruik bewegende gemiddeldes metode deur die berekening van agtereenvolgende bewegende gemiddeldes. Die lineêre bewegende gemiddeldes metode word dikwels gebruik wanneer daar 'n tendens in die data. Eerstens, bereken en stoor die bewegende gemiddelde van die oorspronklike reeks. Dan, te bereken en stoor die bewegende gemiddelde van die voorheen gestoor kolom om 'n tweede bewegende gemiddelde te verkry. In naïef vooruitskatting, die voorspelling vir die tyd t is die datawaarde op tydstip t -1. Die gebruik van bewegende gemiddelde prosedure met 'n bewegende gemiddelde lengte een gee naïef vooruitskatting. Voorspellings vir 'n enkele eksponensiële gladstryking analise Die toegerus waarde op tydstip t is die reëlmatige waarde op tydstip t-1. Die vooruitskattings is die ingeboude waarde aan die voorspelling oorsprong. As jy voor voorspel 10 tydeenhede, sal die voorspelde waarde vir elke keer as die ingeboude waarde by die oorsprong wees. Data tot die oorsprong word gebruik vir die smoothing. In naïef vooruitskatting, die voorspelling vir die tyd t is die datawaarde op tydstip t-1. Voer enkele eksponensiële gladstryking met 'n gewig van een tot naïef vooruitskatting te doen. Voorspellings vir 'n dubbele eksponensiële gladstryking ontleding Double eksponensiële gladstryking gebruik die vlak en tendens komponente om voorspellings te genereer. Die voorspelling vir m tydperke voor van 'n punt op tydstip t is L t mT t. waar L t is die vlak en T t is die tendens op tydstip t. Data tot die voorspelling oorsprong tyd sal gebruik word vir die smoothing. Voorspellings vir Winters metode Winters metode maak gebruik van die vlak, tendens, en seisoenale komponente om voorspellings te genereer. Die voorspelling vir m tydperke voor van 'n punt op tydstip t is: waar L t is die vlak en T t is die tendens op tydstip t, vermenigvuldig met (of bygevoeg vir 'n toevoeging model) die seisoenale komponent vir dieselfde tydperk van die vorige jaar. Winters metode gebruik data tot die voorspelling oorsprong tyd om te genereer die forecasts. Moving Gemiddeld Vooruitskatting Inleiding. Soos jy kan raai ons is op soek na 'n paar van die mees primitiewe benaderings tot vooruitskatting. Maar hopelik dit is ten minste 'n waardevolle inleiding tot sommige van die rekenaar kwessies wat verband hou met die implementering van voorspellings in sigblaaie. In dié opsig sal ons voortgaan deur te begin by die begin en begin werk met bewegende gemiddelde voorspellings. Bewegende gemiddelde voorspellings. Almal is vertroud met bewegende gemiddelde voorspellings ongeag of hulle glo hulle is. Alle kollege studente doen dit al die tyd. Dink aan jou toetspunte in 'n kursus waar jy gaan vier toetse gedurende die semester het. Kom ons neem aan jy het 'n 85 op jou eerste toets. Wat sou jy voorspel vir jou tweede toetstelling Wat dink jy jou onderwyser sou Ongeag voorspel vir jou volgende toetstelling Wat dink jy jou vriende kan voorspel vir jou volgende toetstelling Wat dink jy jou ouers kan voorspel vir jou volgende toetstelling al die blabbing jy kan doen om jou vriende en ouers, hulle en jou onderwyser is baie geneig om te verwag dat jy iets kry in die gebied van die 85 wat jy nou net gekry. Wel, nou kan aanneem dat ten spyte van jou self-bevordering van jou vriende, jy oorskat jouself en vind jy minder vir die tweede toets te studeer en so kry jy 'n 73. Nou wat is al die betrokkenes en onbekommerd gaan verwag jy sal op jou derde toets te kry Daar is twee baie waarskynlik benaderings vir hulle om 'n skatting, ongeag of hulle dit sal met julle deel te ontwikkel. Hulle mag sê om hulself, quotThis man is altyd waai rook oor sy intelligensie. Hes gaan na 'n ander 73 as hes gelukkig te kry. Miskien sal die ouers probeer meer ondersteunend te wees en sê, quotWell, tot dusver youve gekry 'n 85 en 'n 73, so miskien moet jy dink oor hoe om oor 'n (85 73) / 2 79. Ek weet nie, miskien as jy minder gedoen partytjies en werent swaaiende die mol al oor die plek en as jy begin doen 'n baie meer studeer jy kan kry 'n hoër score. quot Beide van hierdie vooruitskattings eintlik bewegende gemiddelde voorspellings. Die eerste is net met jou mees onlangse telling tot jou toekomstige prestasie te voorspel. Dit staan ​​bekend as 'n bewegende gemiddelde vooruitskatting gebruik van een tydperk van data. Die tweede is ook 'n bewegende gemiddelde voorspelling, maar die gebruik van twee periodes van data. Kom ons neem aan dat al hierdie mense breker op jou groot gees soort het dronk jy af en jy besluit om goed te doen op die derde toets vir jou eie redes en 'n hoër telling in die voorkant van jou quotalliesquot sit. Jy neem die toets en jou telling is eintlik 'n 89 Almal, insluitende jouself, is beïndruk. So nou het jy die finale toets van die semester kom en soos gewoonlik jy voel die behoefte om almal te dryf in die maak van hul voorspellings oor hoe sal jy doen op die laaste toets. Wel, hopelik sien jy die patroon. Nou, hopelik kan jy die patroon te sien. Wat glo jy is die mees akkurate Whistle Terwyl ons werk. Nou moet ons terugkeer na ons nuwe skoonmaak maatskappy wat begin is deur jou vervreemde halfsuster genoem Whistle Terwyl ons werk. Jy het 'n paar verkope verlede data wat deur die volgende artikel uit 'n sigblad. Ons bied eers die data vir 'n drie tydperk bewegende gemiddelde skatting. Die inskrywing vir sel C6 moet wees Nou kan jy hierdie sel formule af na die ander selle C7 kopieer deur C11. Let op hoe die gemiddelde beweeg oor die mees onlangse historiese data, maar gebruik presies die drie mees onlangse tye beskikbaar wees vir elke voorspelling. Jy moet ook sien dat ons nie regtig nodig om die voorspellings vir die afgelope tyd maak om ons mees onlangse voorspelling ontwikkel. Dit is beslis anders as die eksponensiële gladstryking model. Ive ingesluit die quotpast predictionsquot omdat ons dit sal gebruik in die volgende webblad om voorspellingsgeldigheid meet. Nou wil ek die analoog resultate aan te bied vir 'n periode van twee bewegende gemiddelde skatting. Die inskrywing vir sel C5 moet wees Nou kan jy hierdie sel formule af na die ander selle C6 kopieer deur C11. Let op hoe nou net die twee mees onlangse stukke historiese data gebruik vir elke voorspelling. Weereens het ek die quotpast predictionsquot vir illustratiewe doeleindes en vir latere gebruik in vooruitskatting validering ingesluit. Sommige ander dinge wat van belang om te let. Vir 'n m-tydperk bewegende gemiddelde voorspelling net die m mees onlangse data waardes word gebruik om die voorspelling te maak. Niks anders is nodig. Vir 'n m-tydperk bewegende gemiddelde voorspelling, wanneer quotpast predictionsquot, agterkom dat die eerste voorspelling kom in periode m 1. Beide van hierdie kwessies sal baie belangrik wees wanneer ons ons kode te ontwikkel. Die ontwikkeling van die bewegende gemiddelde funksie. Nou moet ons die kode vir die bewegende gemiddelde voorspelling dat meer buigsaam kan word ontwikkel. Die kode volg. Let daarop dat die insette is vir die aantal periodes wat jy wil gebruik in die vooruitsig en die verskeidenheid van historiese waardes. Jy kan dit stoor in watter werkboek wat jy wil. Funksie MovingAverage (Historiese, NumberOfPeriods) as 'n enkele verkondig en inisialisering veranderlikes Dim punt Soos Variant Dim Counter As Integer Dim Akkumulasie as 'n enkele Dim HistoricalSize As Integer Inisialiseer veranderlikes Counter 1 Akkumulasie 0 bepaling van die grootte van Historiese skikking HistoricalSize Historical. Count Vir Counter 1 Om NumberOfPeriods opbou van die toepaslike aantal mees onlangse voorheen waargeneem waardes Akkumulasie Akkumulasie Historiese (HistoricalSize - NumberOfPeriods toonbank) MovingAverage Akkumulasie / NumberOfPeriods die kode sal in die klas verduidelik. Jy wil die funksie te posisioneer op die sigblad sodat die resultaat van die berekening verskyn waar dit die volgende wil.

No comments:

Post a Comment